Содержание

Введение…………………………………………………………………………..2

Почему при термическом отжиге удельное сопротивление металлов возрастает, а при термическом отжиге уменьшается…………………………..3

Почему металлоидные примеси сильнее влияют на удельное сопротивление металлов, чем примеси металических элементов……………………………….9

Введение

Термической обработкой металлов называется тепловой процесс, при котором металл нагревается до определенной температуры, выдерживается некоторое время при этой температуре, а затем с определенной скоростью охлаждается. Термическая обработка производится для повышения механической прочности и износоустойчивости, твердости (закалка), улучшения обрабатываемости (нормализация), снятия внутренних напряжений и уменьшения хрупкости после ковки, штамповки и литья (отжиг), уменьшения твердости и хрупкости; снятия внутренних напряжений после закалки (отпуск). Термической обработке подвергаются главным образом стали. В отдельных случаях ее применяют для улучшения свойств чугуна и цветных металлов. Нагрев металла при термической обработке производится в специальных печах: пламенных, электрических и газовых, снабженных приборами для измерения и регулирования температуры нагрева. Охлаждение — в ваннах с соответствующей жидкостью (водой, маслом, расплавленным свинцом и т. д.). Основные виды термической обработки: отжиг, нормализация, закалка и отпуск.

1. Почему при термическом отжиге удельное сопротивление металлов возрастает, а при термическом отжиге уменьшается ?

Для закалки изделия нагревают до высокой температуры, а затем быстро охлаждают в специальных охлаждающих средах. В зависимости от режима закалки одна и та же сталь получает различ-ные структуры и свойства. Для получения наилучших результатов изделие равномерно нагревают до температуры 740-850°С…

Назначение закалки заключается в том, чтобы придать изделию высокую твердость и прочность. Однако при закалке с повышением твердости сталь становится более хрупкой.

Для закалки изделия нагревают до высокой температуры, а затем быстро охлаждают в специальных охлаждающих средах. В зависимости от режима закалки одна и та же сталь получает различ-ные структуры и свойства. Для получения наилучших результатов изделие равномерно нагревают до температуры 740-850°С и затем быстро охлаждают до 400-450°С. Скорость охлаждения долж-на быть не менее 150°С в секунду, т. е. охлаждение должно произойти в течение всего 2-3 с. Дальнейшее охлаждение, ниже 300°С, может протекать при любой скорости, так как полученная при закалке структура достаточно устойчива и скорость дальнейшего охлаждения на нее не оказы-вает влияния. В качестве охлаждающих сред чаще всего употребляются вода и трансформатор-ное масло. Скорость охлаждения в воде больше, чем в масле. При температуре воды 18°С скорость охлаждения достигает 600°С в секунду, а в масле — до 150°С в секунду.

Для придания изделию большей твердости закалку производят в проточной воде. При охлаждении горячей поковки в стоячей воде между водой и поковкой возникает слой пара, который изолирует нагретую поковку от охлаждающей среды. Поэтому во избежание этого пользуются проточной водой.

Иногда для повышения закаливающей способности в воду добавляют поваренную соль (до 10%) или серную кислоту (до 10-12%).

Нагрев изделия выше критической точки придает металлу крупнозернистое строение, а это приво-дит к нежелательным последствиям: короблению, деформации и появлению трещин. К этому же приводит и быстрое охлаждение.

При закалке инструментов применяются закалочные печи, которые делятся на камерные, или пламенные, где изделие нагревается открытым пламенем; электрические муфельные; печи-ванны, представляющие собой тигли, наполненные расплавами солей, например хлористым барием.

Нагревание в ваннах наиболее удобно, вследствие того что температура ванны всегда постоянная и закаливаемый инструмент не может нагреться выше этой температуры. Кроме того, нагрев в жидких средах идет в два раза быстрее, чем в воздушной среде, а в расплавленном металле-в четыре раза быстрее. Например, для закалки мелких стальных изделий используют расплавлен-ный свинец. Мелкие заготовки погружают в ванны и сверху кладут древесный уголь, который при горении на поверхности свинца создает восстановительное пламя — свинец не окисляется. Чтобы свинец не оседал на стальных изделиях, их смазывают мучным клейстером с поваренной солью.

При нагревании инструмента в муфелях применяются следующие режимы

Изделия загружают в холодную печь. Нагревают постепенно, вместе с печью. Время нагрева продолжительное, но температурное напряжение, возникающее в изделиях, наименьшее.

Изделия загружают в печь, нагретую до заданной температуры, и прогревают при этой температуре. Время нагрева здесь меньше, но температурные напряжения больше чем при предыдущем режиме.

Изделия загружают в печь, температура которой выше необходимой для закалки, в процессе нагрева температуру снижают до заданной. В этом случае скорость нагрева высокая, но и напря-жение, возникающее в изделиях, очень велико.

Изделия загружают в печь, температуру которой непрерывно поддерживают выше необходи-мой. Изделия нагревают до заданной температуры, но ниже температуры печи. Это наиболее форсированный режим, напряжение достигает максимальных величин.

В последнее время для нагрева под закалку применяют токи высокой частоты.

Накаливаемую деталь помещают в специальный индуктор, по которому пропускают ток высокой частоты, и деталь очень быстро нагревается до необходимой температуры.

После закалки необходимо произвести отпуск. Он смягчает действия закалки, повышает вязкость и уменьшает хрупкость и твердость изделия. Кроме того, отпуск устраняет или снижает напряже-ние, вызванное закалкой. Для определения температуры отпуска очень часто до сих пор пользу-ются цветами побежалости. Если очищенное от окалины стальное изделие нагревать, то начиная с температуры 220°С на нем образуется тонкая пленка оксидов железа, придающая изделию различные цвета от светло-желтого до серого. С повышением температуры или увеличением времени пребывания изделия при данной температуре оксидная пленка утолщается и цвет ее изменяется.

Цвета побежалости одинаково появляются как на сырой, так и на закаленной стали. При отпуске закаленных инструментов применяют два способа.

Поверхность закаленного инструмента хорошо отшлифовывают мелкой шкуркой и затем на-гревают. По мере того как температура нагрева повышается, на чистой поверхности инструмента появляются цвета побежалости. Когда появится нужный цвет и, следовательно, изделие будет нагрето до определенной температуры, его быстро охлаждают в воде. За цветами нужно следить внимательно, некоторые из них, как, например, светло-красный, сменяются быстро.

При закалке многих инструментов, например чеканов, штихилей, резцов, молотков и т. д., тре-буется, чтобы закаленной была только рабочая часть, а сам инструмент оставался незакаленным, сырым. В этом случае инструмент нагревают немного выше режущего(рабочего) конца до требуемой температуры, после чего охлаждают в воде только рабочую часть, а место выше рабочей части остается горячим. Быстро вынув инструмент из воды, зачищают рабочую часть (шкуркой или трением о землю). Теплота, оставшаяся в неохлажденной части, поднимает температуру охлаж-денного конца, и после появления на нем нужного цвета побежалости инструмент окончательно охлаждают.

При закалке инструмента с двумя концами, например кирки, молотка и т. д., трудность заключается в том, что в изделии только два рабочих конца должны быть закалены, а середина должна быть незакаленной. Закалку производят за один нагрев. Изделие равномерно нагревают до нужной температуры и в воду опускают в первую очередь конец, имеющий меньшую массу, т. е. тот, который может быстрее охладиться. При охлаждении в воде конца только рабочей части нужно внима-тельно следить за нагретым вторым концом, чтобы он не охладился. Быстро вынув первый конец и зачистив его шкуркой, второй (только рабочую часть) погружают в воду. При этом следят за цвета-ми побежалости первого конца; когда появляется нужный цвет, снова опускают первый конец в воду, второй быстро зачищают и следят за цветами на втором конце. При появлении нужного цве-та также замачивают в воде. Так, периодически меняя положение концов, изделие остужают.

Запас температуры должен оставаться в средней части инструмента, поэтому при закалке пользуются клещами с узкими губками. Большие плоскости холодных губок клещей отбирают теплоту в зоне прикосновения. Для закалки более мелких изделий можно использовать клещи с массивными губками, изделие в этом случае нагревают вместе с клещами. Прием с клещами применяется при местном отпуске, когда в каком-то участке стального закаленного изделия нужно сделать отвер-стие, а его, твердость не позволяет это сделать. Для этого берут клещи нужного размера, нагре-вают их до красного, или светло-красного каления и захватывают металл в зоне будущего отверстия.

За отпуском металла можно следить по цветам побежалости. Этот прием используется при отпус-ке тонких стальных изделий кос, пил и т. д.

В процессе нагрева стальных изделий происходит их окисление и обезуглероживание. Получение на поверхности окалины идет за счет образования оксидов железа. Образование на поверхности окалины приводит к угару металла, искажению геометрической фор-мы изделий, уменьшению теплопроводности, что понижает скорость нагрева изделия. Кроме того, повышается твердость и затрудняется механическая обработка. Окалина удаляется с изделий ли-бо механическим, либо химическим путем (травлением).

  Обезуглероживание состоит в выгорании углерода с поверхности изделия.

Обезуглероженный слой обладает пониженной твердостью и прочностью.Интенсивность, с которой происходит окисление и обезуглероживание, зависит от состава печной атмосферы и температуры нагрева. Чем выше нагрев, тем процессы идут быстрее.

В наше время больших научных и технических достижений древнее ремесло кузнеца не исчезло. Изделия современных кузнецов находят применение в нашем быту. Творения, созданные руками художников-кузнецов, гармонично сочетаются с фасадами и внутренней архитектурой зданий, яв-ляясь одновременно самостоятельным художественным произведением. Ажурный орнамент кова-ных решеток красиво сочетается со стройными линиями современной архитектуры. Умелое ис-пользование новых видов обработки металла электросварки, газовой, автогенной и т. д. дают художникам-кузнецам более широкие возможности использования и применения своего ремесла.

Старые технологические приемы оживают вновь при восстановлении разрушенных памятников культуры. Кузнечное дело, как и всякая рукодельная работа, является средством пропаганды эсте-тической мысли и чувств и не теряет своего значения в период высокоразвитой промышленности.

Навыки по выполнению этих слесарных работ необходимы мастерам и художникам прикладного искусства, так как они постоянно применяются при первоначальной обработке деталей, их сборке и монтировке в целые готовые изделия. Например, кованые художественные изделия: решетки, кронштейны, ограды, каминные принад-лежности и др., выполненные из отдельных частей, собирают также и на резьбовых соединениях.

Для получения мелкозернистой структуры, устранения химической и структурной неоднородности, уменьшения внутренних напряжений, понижения твердости стали для облегчения механической обработки производят отжиг и нормализацию.

Существуют различные виды отжига, характеризующиеся режимами нагрева и охлаждения.

1. Полный отжиг определяется нагревом стали на 30-50oC выше линии GOS, выдержкой при этой температуре и последующим медленным охлаждением. Полный отжиг стали применяется для получения однородной мелкозернистой структуры, понижения твердости, повышения пластичности. Этому виду отжига подвергаются стали до механической обработки.

2. Неполный (ускоренный) отжиг состоит из нагрева стали на 30-50oC выше линии PSK, выдержки при этой температуре и последующего медленного охлаждения. Неполный отжиг применяется для снятия внутренних напряжений и улучшения механической обработки.

3. При изотермическом отжиге изделия нагревают на 30-50oC выше линии GSK, выдерживают при этой температуре, а затем быстро переносят их в среду с постоянной температурой несколько ниже линии PSK (точка Аc1 — 630-700oC). При этой постоянной температуре производят выдержку стали до полного распада аустенита, после чего охлаждают на воздухе. После такого отжига стали приобретают такие же механические свойства, как и после полного отжига. Приемуществами изотермического отжига являются полное устранение остаточных напряжений в стали и сокращение времени отжига почти вдвое. Изотермическому отжигу подвергаются легированные стали.

4. После проведения полного или неполного отжига получается цементит в виде пластинок. Для получения цементита в виде зерен производят сфероидизирующий отжиг, который состоит из нагрева стали до температуры несколько выше линии PSK, длительной выдержки (5-6 ч) и последующего медленного охлаждения. Сталь с такой структурой обладает большей пластичностью, меньшей твердостью и прочностью по сравнению со сталью, прошедшей полный отжиг. Сфероидизирующий отжиг применяется у заэвтектоидных сталей для улучшения их обрабатываемости резанием.

5. Диффузионный отжиг (гомогенизация) состоит из нагрева стали до 1050–1150oC, длительной выдержки (10-15 ч) при этой температуре и последующего охлаждения. В результате диффузионного отжига происходит выравнивание неоднородности стали по химическому составу и уменьшение ликвации. Гомогенизации подвергаются слитки легированных сталей, крупные стальные отливки. При диффузионном отжиге получают крупнозернистую структуру, которая устраняется последующей горячей обработкой давлением или применением полного отжига.

6. Рекристаллизационный (низкий) отжиг состоит из нагрева стали до температуры на 50-100oC ниже линии PSK (но выше температуры рекристаллизации), выдержки при этой температуре и последующего охлаждения на воздухе. Рекристаллизационный отжиг применяют для снятия наклепа и внутренних напряжений в стали после холодной обработки давлением или как промежуточный отжиг для повышения пластичности и предупреждения появления трещин в стали при холодной обработке давлением. В результате такого отжига образуется однородная мелкозернистая структура с небольшой твердостью и значительной вязкостью.

Нормализация состоит из нагрева стали на 30-50oC выше линии GSE, выдержки при этой температуре и последующего охлаждения на воздухе. Нормализация применяется для исправления структуры перегретой стали и горячедеформированных заготовок, выравнивания структуры сварного шва. При нормализации сталь приобретает более мелкозернистую структуру, чем после отжига. Номализация является более экономичным термическим процессом, чем отжиг.

Выбор варианта термической обработки (отжиг или нормализация) зависит от состава стали и предшествующего технологического процесса. Например, для выравнивания химического состава слитков или крупных отливок назначается диффузионный отжиг. Для снижения твердости стали после горячей обработки (облегчения обработки резанием) выбирают полный или неполный отжиг (в зависимости от состава стали). После холодной обработки давлением для снятия наклепа и внутренних напряжений сталь подвергают рекристаллизационному отжигу.

На результат отжига и нормализации оказывают влияние температура и скорость нагрева, время выдержки и скорость охлаждения.

Температура нагрева выбирается по диаграмме состояния Fe-Fe3C в зависимости от содержания С в стали.

При выборе скорости нагрева небходимо учитывать габариты изделия (разницу температур наружных и внутренних частей изделия), форму изделия (чем сложнее, тем более медленный нагрев), химический состав стали. С увеличением содержания углерода в стали уменьшается ее теплопроводность. При легировании стали теплопроводность также падает. Чем меньше теплопроводность, тем медленнее должен быть нагрев. Продолжительность нагрева сталей при отжиге и нормализации составляет примерно от 30 до 90 мин на каждые 25 мм изделия.

Выдержка после нагрева до заданной температуры должна обеспечить прогрев всего изделия и полное завершение всех процессов, совершающихся при нагреве стали. Время выдержки зависит от толщины изделия, исходной структуры, химического состава стали. Чем массивнее изделие и крупнее зерно исходной структуры, тем длительнее должна быть выдержка. Обычно τ в составляет 20-25% от τ н.

После нагрева и выдержки продолжительность охлаждения должна обеспечивать полный распад твердого раствора. Скорость охлаждения зависит от охлаждающей среды и размеров изделия. Охлаждение должно быть равномерным и медленным до 400-500oC. При этом углеродистые стали охлаждают со скоростью 100-200oC, в 1 ч, а легированные 20-60oC в 1 ч; дальнейшее охлаждение проводится на воздухе.

2. Почему металлоидные примеси сильнее влияют на удельное сопротивление металлов, чем примеси металических элементов

Примеси вносят наиболее существенный вклад в величину остаточного сопротивления. Атомы любого примесного элемента повышают ρ, даже если сама примесь обладает большей электропроводностью.

Рассеяние электронов проводимости на атомах примеси тем сильнее, чем больше разница в валентности примесного элемента и металла растворителя ∆Z: ρост ~ ∆Z2. Так что металлоидные примеси на снижение проводимости оказывают более сильное влияние, чем металлические элементы.

Дефекты структуры вакансии, атомы в междоузлии, дислокации, границы зерен и субзерен, прочие несовершенства кристаллического строения вносят определенный вклад в ρост. Например, увеличение точечных дефектов в меди на 1 ат.% увеличивает ρост  в среднем на 0,01 мкОм·м. Чем выше плотность дефектов, тем больше удельное сопротивление.

На удельное сопротивление металлических материалов влияет термообработка. Так, при закалке стали образуется неравновесная структура с большими искажениями кристаллической решетки и внутренними напряжениями. Плотность дефектов по всему объему кристалла резко возрастает, что приводит к значительному росту удельного сопротивления. При отжиге металлов и сплавов создается термодинамически устойчивая равновесная структура, внутренние напряжения исчезают, плотность дефектов уменьшается до минимума (в 2 раза и более), поэтому ρост резко снижается.

Пластическая деформация вызывает увеличение плотности дефектов и снижение проводимости. Для чистых металлов это снижение составляет несколько процентов, для них пластическую деформацию можно использовать как способ упрочнения без существенных потерь в электропроводности. Для металлических сплавов снижение электропроводности в результате наклепа может составлять до 25%. Для восстановления электропроводности после пластической деформации проводят рекристаллизационный отжиг.

Заключение.

Термической обработкой металлов называется тепловой процесс, при котором металл нагревается до определенной температуры, выдерживается некоторое время при этой температуре, а затем с определенной скоростью охлаждается.

Нагрев металла при термической обработке производится в специальных печах: пламенных, электрических и газовых, снабженных приборами для измерения и регулирования температуры нагрева.

Отжиг это вид термообработки сплавов и металлов. Метод отжига заключается, главным образом, в нагреве металла до определенной температуры и дальнейшего медленного охлаждения.В процессе отжига происходит отдых металлов (процесс возврата), гомогенизации и рекристаллизации. Цели отжига: 1. Снижение твердости металла. Необходимо для повышения обрабатываемости. 2. Улучшение структуры металла. 3. Достижение однородности в процессе отжига. 4. Снятие внутреннего напряжения металла.=

Список литературы.

http://plastinfo.ru/information/glossary/l16/595/

http://studik.net/udelnoe-soprotivlenie-metallicheskix-splavov/

http://dailycomp.ru/metallurgiya-stali/875-ostatochnye-vrednye-primesi-stali-obschaya-harakteristika.html